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Abstract

We study e¢cient, Bayes-Nash incentive compatible mechanisms in a
social choice setting that allows for informational and allocative externali-
ties. We show that such mechanisms exist only if a congruence condition
relating private and social rates of information substitution is satis…ed. If
signals are multi-dimensional, the congruence condition is determined by
an integrability constraint, and it can hold only in non-generic cases where
values are private or a certain symmetry assumption holds. If signals are
one-dimensional, the congruence condition reduces to a monotonicity con-
straint and it can be generically satis…ed. We apply the results to the
study of multi-object auctions, and we discuss why such auctions cannot
be reduced to one-dimensional models without loss of generality.

1. Introduction

There exists an extensive literature on e¢cient auctions and mechanism design. A
lot of attention has been devoted to the case where each agent i has a quasi-linear
utility function that depends on the chosen social alternative, on information (or
signal) privately known to i, and on a monetary transfer, but does not depend
on information available to other agents. In this framework, a prominent role
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is played by the Clarke-Groves-Vickrey (CGV) mechanisms (see Clarke, 1971,
Groves, 1973, Vickrey, 1961). These are mechanisms that ensure both that an
e¢cient decision is taken and that truthful revelation of privately held information
is a dominant strategy for each agent. The result holds for arbitrary dimensions
of signal spaces and for arbitrary signals’ distributions1.
In this paper we study the case where each agent has a quasi-linear utility

function having as arguments signals received by all agents and the chosen social
alternative. Hence, besides allocative externalities, we allow for informational
externalities, and we speak of ”interdependent valuations”. Signals may be multi-
dimensional, but we assume that they are independently drawn across agents.
(Signal independence is the most seriously restrictive assumption; observe though
that this assumption does not bite for the ”principal-agent” framework of Example
4.4, and it is not required for the result in the one-dimensional case of Section 5.)
For an illustration, consider an auction where a setM of heterogenous objects

is divided among n + 1 agents (agent zero is the seller, the rest are potential
buyers). An alternative is a partition u of M; u = fuigNi=0 ; where ui is the
set of objects allocated to bidder i; i = 1; 2; :::N and u0 is the set of unsold
objects. Agent i receives a signal sib for each possible bundle b 2 2M , and has
a valuation function V iu for each partition u: Di¤erent models are obtained by
varying the dependence of valuations on partitions and signals. Consider the
following examples: 1) V iu only depends on ui and s

i
ui
. This is a pure ”private

values” model; 2) V iu depends on the entire partition u and on s
i
ui
. This is a

”private values” model which allows for allocative externalities. 3) V iu depends on
u and on fsjuignj=0; or V iu depends on u and on fsjujgnj=0. These are models which
allow for both allocative and informational externalities2.
For our present purpose, the main common feature of the above examples is

that the information available to each agent is multi-dimensional (one signal per
bundle) and that di¤erent signals a¤ect valuations in di¤erent alternatives.
There are many auction papers that go beyond the private values case (e.g.,

the literature following Milgrom and Weber, 1982), but almost all of them restrict
attention to situations where there is one object (or there are several identical
units), signals are one-dimensional, agents are ex-ante symmetric and do not care

1It is well known that, generally, CGV mechanisms cannot simultaneously satisfy conditions
such as budget-balancedness and individual rationality (for example, Myerson and Satterth-
waite’s (1983) impossibility result can be obtained as a corollary of this fact).

2For example, consider an auction where the bidders are …rms in an oligopoly. Independence
of signals across bidders is plausible if i0s private information concerns the modi…cation of its
cost structure (…xed and variable costs) induced by the acquisition of a bundle ui: Together
with the …nal allocation of objects (e.g., licenses, patents, plants), this information a¤ects the
pro…t of all …rms through the oligopolistic equilibrium.
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about what other agents receive at the auction3.
Most of the works on mechanism design with informational interdependent

valuations consider one-dimensional signals. Williams and Radner (1988) show
that e¢cient, dominant-strategy incentive compatible mechanisms do not gener-
ally exist4. Dasgupta and Maskin (1999) o¤er a general study of multi-object
auctions where agents have one-dimensional signals and where there are no al-
locative externalities5. They assume that the designer is not informed about the
bidders’ valuation functions, and hence these must also be reported. Dasgupta
and Maskin construct a mechanism that does not depend on the functional form of
the valuation functions and achieves e¢cient allocations under appropriate condi-
tions on marginal valuations. Under similar informational assumptions, Perry and
Reny (1999a) construct an e¢cient bidding procedure which is less complex than
Dasgupta and Maskin’s mechanism, but which works only for a one-dimensional
model with m identical units, no allocative externalities and decreasing marginal
valuations. In their procedure agents place many bids which depend on the unit
and on the potential competitor on that unit. In the same framework with m
identical units, Ausubel (1997, Appendix B) assumes that the valuation functions
are known to the designer and describes an e¢cient revelation mechanism6. Under
appropriate conditions on marginal valuations (such as those in Perry and Reny,
1999a) this mechanism is incentive compatible and it generalizes the revelation
mechanisms for the one-unit case constructed in Maskin (1992) and Dasgupta and

3Auction models emphasizing the role of allocative externalities in a one-object setup are
discussed in Jehiel and Moldovanu (1996) and Jehiel, Moldovanu and Stacchetti (1996, 1999).

4Crémer and McLean (1985,1988) and McAfee and Reny (1992) have given conditions under
which a principal can extract the full surplus available when types are correlated. Full extraction
mechanisms are, in particular, e¢cient. Neeman (1998) shows that these results do not hold
in a model that can be interpreted as one where agents have multi-dimensional signals, and
signals have some private and some common components. Aoyagi (1998) presents a general
existence result of e¢cient, budget balanced and incentive compatible mechanisms when agents
have …nitely many correlated types. None of the above papers covers the present framework
( i.e., a continuum of mutually payo¤ relevant multi-dimensional types), but we suspect that
correlation among types allows some possibility results. On the other hand, the mechanisms
displayed in the literature above are not very intuitive and require potentially unlimited transfers
as correlations get small.

5Dasgupta an Maskin allow for heterogenous objects. But, if the units are not identical, the
representation of preferences on various bundles generally requires at least one scalar signal per
bundle - see the examples above.

6Ausubel (1997) also studies an indirect, ascending bidding procedure which is e¢cient for
the case of interdependent valuations only if bidders are ex-ante symmetric and have constant
marginal valuations up to a …xed capacity. Perry and Reny (1999b) show how to modify this
procedure in order to get e¢ciency when agents are asymmetric and marginal valuations are
decreasing.
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Maskin (1997)7.
Maskin (1992) observed that, in general, no e¢cient, incentive-compatible

one-unit auction exists if a buyer’s valuation for that unit depends on a multi-
dimensional signal (see further comments on this result in Section 4 below). Das-
gupta and Maskin (1999) show how to transform such a framework into one where
valuations depend on a one-dimensional su¢cient statistic8. The reduced one-
dimensional model admits e¢cient, incentive compatible mechanisms which are
also constrained e¢cient (i.e., second-best) for the original model.
This paper is organized as follows: In Section 2 we present the social choice

model. In Section 3 we obtain a characterization theorem for Bayesian incen-
tive compatible direct mechanisms. In Section 4 we exhibit impossibility results
about e¢cient, Bayesian incentive compatible mechanisms. We only require value
maximization, and we completely ignore budget-balancedness and any other con-
straints. Hence, we show that providing incentives for truthful revelation of pri-
vately held information is not compatible even with a very weak e¢ciency require-
ment.
Relatively simple results are obtained for situations where incentive compatible

mechanisms cannot condition on some signal which is relevant for e¢ciency con-
siderations. Theorem 4.1 shows impossibility for the case where there is at least
one agent possessing information that a¤ects other agents, but does not directly
a¤ect the owner of that information. A similar argument is used in Example 4.2
which shows that e¢cient, incentive compatible mechanisms may not exist if there
are an alternative k and an agent i such that agent i’s signal a¤ecting her valuation
in alternative k is multi-dimensional (this corresponds to Maskin’s (1992) exam-
ple). The basic intuition behind these results is that a one-dimensional instrument
(agent i0s transfer in alternative k) is not su¢cient to extract multi-dimensional
information relevant for an e¢cient choice of alternative k.
Our main impossibility result is Theorem 4.3. We consider there a framework

where each agent i has a K¡dimensional signal si (K is the number of alterna-
tives). The coordinate sik is a one-dimensional signal a¤ecting the valuations of all
agents for alternative k: This framework is critical since, a-priori, incentive com-
patible mechanisms may condition on all signals, and since the one-dimensional
transfer associated with alternative k should, in principle, be su¢cient to extract
the one-dimensional signal sik.
To understand the insight behind Theorem 4.3, consider a situation where

there are K ¸ 2 alternatives and where only agent i obtains a private K-
dimensional signal. Keep this signal constant in all but two coordinates k and k0;
and imagine the locus in the (sik; s

i
k0) sub-space where alternatives k and k

0 yield

7This is an early version of Dasgupta and Maskin (1999).
8A similar reduction is perfomed in Jehiel, Moldovanu and Stacchetti (1996).
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the same highest social welfare (see Figure 1 in Section 4). At each point, the
slope of this curve equals the social (i.e., with respect to social welfare) marginal
rate of substitution among i0s signals in alternatives k and k0: In order to make
i choose e¢ciently, we must ensure that i0s types along that curve are indi¤erent
between alternatives k and k0. This means that, along the curve, i0s value in
alternative k plus the transfer he obtains in this alternative must equal his value
inlternative k0 plus the transfer in k0: But, for any given transfers, the locus in the
(sik; s

i
k0) sub-space where i is indi¤erent between k and k

0 is given by a di¤erent
curve whose slope equals at each point the private (i.e, with respect to i0s welfare
function) marginal rate of substitution among i0s signals in alternatives k and k0:
E¢cient, incentive compatible mechanisms exist only in the non-generic situation
where the two curves coincide. Theorem 4.3 generalizes this intuition to the more
complex setting where several agents obtain private signals. For the linear model
detailed in the paper, we can exhibit a simple global necessary condition that
needs to be satis…ed by incentive-compatible, e¢cient mechanisms. The condi-
tion relates private and social rates of informational substitution, and it holds
only for a closed, zero-measure set of parameters9.
The proof of Theorem 4.3 is based on the following technical observation: an

incentive compatible mechanism generates for each agent a vector …eld that as-
sociates to each type a vector of expected probabilities with which the various
alternatives are chosen. A generalization of the standard one-dimensional en-
velope argument shows that this vector …eld is the gradient of the equilibrium
expected utility function. Since it is a gradient, the vector …eld must satisfy an
integrability condition involving its cross-derivatives10. The impossibility results
follow by showing that the vector …elds generated by e¢cient mechanisms satisfy
the required conditions only under very restrictive conditions.
Since the integrability constraint bites in any multi-dimensional model, results

similar to Theorem 4.3 hold as soon as there is at least one agent whose signal is
of dimension d ¸ 2.
In Section 5 we study the remaining case where signal spaces are one-dimensional.

We construct a mechanism that is e¢cient and incentive compatible if several in-
equalities relating private and social marginal valuations are satis…ed. The main
idea of the construction is to make i’s transfer equal to the cumulative e¤ect of
i’s action (here a signal report) on all other agents11. Since i’s e¤ect on others

9We show that the congruence condition is satis…ed in situations where either a certain
symmetry condition, or the private values assumption hold.
10A similar condition appears in the classical demand theory for several goods (see Chapter 3

in Mas-Colell, Whinston and Green, 1995): the matrix of price derivatives for a demand function
arising from utility maximization must be symmetric.
11The idea can be traced back to Pigou. It constitutes the basis of the Clarke-Groves-Vickrey

approach.
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depends here i’s signal, incentive compatible transfers must neutralize this in‡u-
ence. The …rst illustration of this idea in an auction context with interdependent
valuations appears in Maskin (1992).
To get an intuition for the result, consider again a situation where only one

agent receives a private signal, and consider a type s¤ of this agent where alter-
natives k and k0 yield the same highest social welfare12. As above, in order to
induce the agent to choose e¢ciently, the transfers in alternatives k and k0 must
make type s¤ indi¤erent between the two13. This relation …xes the di¤erence be-
tween the two transfers, and, given a condition on private marginal valuations,
all types can be induced to correctly choose among k and k0: The …nal step is
to …nd a condition (relating private and social marginal valuations) that allows
to aggregate in a consistent way the transfer di¤erences obtained for each pair of
alternatives14.
Concluding comments are gathered in Section 6. In particular, we comment

on the di¢culty of …nding constrained e¢cient (i.e., second-best) mechanisms in
the general multi-dimensional setup.

2. The Model

There are K social alternatives, indexed by k = 1; :::K and there are N agents,
indexed by i = 1; ::;N .
Each agent i has a signal (or type) si which is drawn from a space Si µ <K£N

according to a continuous density fi(si) > 0; independently of other agents’ sig-
nals. Each agent i knows si; and the densities ffjgNj=1 are common knowledge.
The idea is that the coordinate sikj of s

i in‡uences the utility of agent j in alter-
native k15.
We assume that the signal spaces Si are bounded and convex16, and that

they have a non-empty interior (given the usual topology in <K£N ) and a piece-
wise smooth boundary. Let S denote the Cartesian product

QN
i=1 S

i, with generic
element s. Denote by S¡i the type space of agents other than i, with s¡i as
generic element.

12In contrast to the case of multi-dimensional signals, generically we cannot vary now this
signal without violating the condition that both alternatives yield the same social welfare. Hence,
the locus discussed above degenerates here to a single point.
13Without transfers, i is indi¤erent when he has, say, a type s0 6= s¤:
14This is necessary when there are more than two alternatives.
15We address below (see Example 4.2) situations where the signal of an agent i a¤ecting the

utility of agent j in alternative k is itself multi-dimensional.
16Convexity is assumed for convenience. If Si is simply-connected all results go through

unchanged.
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If alternative k is chosen, and if i obtains a transfer xi; then i0s utility is given
by V ik (s

1
ki; :::; s

n
ki) + xi; where V

i
k (s

1
ki; :::; s

n
ki) =

Pn
j=1 a

j
kis

j
ki, and where the scalar

parameters17 fajkig1·k·K;1·j;i·N are common knowledge. We assume throughout
the paper that 8i; 8k; aiki ¸ 0:
We now de…ne direct social choice mechanisms. A function p : S ! <K such

that 8k; s; 0 · pk(s) · 1 and 8s; PK
k=1 pk(s) = 1 is called a social choice rule. A

social choice rule (SCR) is said to be e¢cient if

8s; ph(s) 6= 0 ) h 2 argmax
k

NX
i=1

V ik (s
1; ::sN) = argmax

k

NX
i=1

NX
j=1

ajkis
j
ki:

A direct revelation mechanism (DRM) is de…ned by a pair (p; x) where p is a
social choice rule, and x : S ! <N is a payment scheme: The term pk(s) is the
probability that alternative k is chosen if the agents report signals s = (s1; :::; sN);
and xi(s) is the transfer to agent i if the agents report signals s: ADRM is e¢cient
if the associated social choice rule is e¢cient18.
Given a payment scheme x and a social choice rule p, we now de…ne for each

agent i the conditional expected payment function yi : Si ! < and the conditional
expected probability assignment functions qi : Si ! <K associated with x and p :

yi(t
i) =

Z
S¡i
xi(t

i; s¡i)f¡i(s¡i)ds¡i

qik(t
i) =

Z
S¡i
pk(t

i; s¡i)f¡i(s¡i)ds¡i:

Assume that agent i believes that all other agents report truthfully and assume
that i reports type ti when his true type is si: Then, i0s expected utility is given
by:

Ui(t
i; si) =

Z
S¡i
[
X
k

(pk(t
i; s¡i)

NX
j=1

ajkis
j
ki)]f¡i(s

¡i)ds¡i + yi(ti) =

X
k

aikis
i
kiq

i
k(t

i) +
X
k

Z
S¡i
[(pk(t

i; s¡i)
X
j 6=i
ajkis

j
ki)]f¡i(s

¡i)ds¡i + yi(ti): (2.1)

De…ne also

Vi(s
i) = Ui(s

i; si): (2.2)

17The analysis directly extends to the case where the valuation functions include also a con-
stant, i.e., V ik (s

1
ki; :::; s

n
ki) =

Pn
j=1 a

j
kis

j
ki + b

i
k (because such constants do not a¤ect incentives).

18We ignore here (as in the CGV approach) the (ex post) ”budget balancedness” condition,
which imposes

P
i xi(s) · 0; 8s. In other words, we abstract from e¢ciency losses due to

potential external subsidies.
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3. Incentive Compatible Mechanisms

By the revelation principle it is enough to restrict attention to direct, incentive
compatible revelation mechanisms. A DRM is (Bayes-Nash) incentive compatible
if:

8i; 8si; ti 2 Si; Vi(si) = Ui(si; si) ¸ Ui(ti; si):

For the characterization of incentive compatible mechanisms we need several
de…nitions. A vector …eld ª : Si ! <K£N is monotone if:

8si; ti 2 Si; (si ¡ ti) ¢ (ª(si)¡ª(ti)) ¸ 0

A vector …eld ª : Si ! <K£N is conservative if there exists a di¤erentiable
function ½ : Si ! < such thatª = r½ (wherer denotes the gradient). A function
½ with the above property is called a potential function for ª: For a convex (and
hence simply-connected) domain Si the existence of a potential function for ª is
equivalent to the following condition: For any si; ti 2 Si the integral of ª from si
to ti is independent of the path of integration19.

Theorem 3.1. Let (p; x) be a DRM, and let fqigni=1 be the associated conditional
probability assignments. For each agent i; let Qi(si) : <K£N ! <K£N be the
vector …eld, where, for each alternative k; the kith coordinate is given by aikiq

i
k(s

i)
and the kjth coordinate; j 6= i; is zero. Then (p; x) is incentive compatible if and
only if the following conditions hold:

1. 8i; the vector …eld Qi is monotone and conservative.
2. 8i; 8si; ti 2 Si; Vi(si) = Vi(ti) + R si

ti Q
i(¿ i)d¿ i 20;21

Proof. See Appendix.
19Path integrals and the equivalence result are discussed in any multivariate caculus textbook.

For a particularly clear and simple exposition, see Chapter V in Lang (1973).
20The integral can be de…ned on any path connecting ti and si since Qi is conservative. For

example, we can choose a straight line:
R si
ti
Qi(¿ i)d¿ i =

R 1
0
Qi((1¡ ®)ti + ®si)) ¢ (si ¡ ti):d®

21The Theorem implies a ”Revenue Equivalence” result. The conditional expected payment
of agent i in any incentive compatible mechanism is solely a function of the associated expected
probability assignment, and of the expected utility of an arbitrary type. Any two incentive
compatible mechanisms with the same probability assignment yield, up to a constant, the same
conditional expected payments. The characterization of incentive compatibility is not valid if
signals are not independent.
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4. Impossibility Results

In an incentive compatible mechanism (p; x) we have Vi(si) = maxti Ui(ti; si): The
function Vi is convex (see the proof of Theorem 3.1), and hence twice di¤erentiable
almost everywhere. Assuming that Vi is di¤erentiable at si we obtain by the
Envelope Theorem that:

8k; @Vi
@siki

(si) = aikiq
i
k(s

i) (4.1)

8k; 8j 6= i; @Vi
@sikj

(si) = 0 (4.2)

Assuming that Vi is twice continuously di¤erentiable at si, we obtain by
Schwarz’s Theorem that the cross-derivatives at si must be equal. This implies :

8k; k0; aiki
@qik(s

i)

@sik0i
=

@2Vi
@sik0i@s

i
ki

(si) =
@2Vi

@siki@s
i
k0i
(si) = aik0i

@qik0(s
i)

@siki
; (4.3)

8k; k0;8j 6= i; aiki
@qik(s

i)

@sik0j
=

@2Vi
@sik0j@s

i
ki

(si) =
@2Vi

@siki@s
i
k0j
(si) = 0 : (4.4)

The mathematical idea behind the following impossibility results is to check
whether e¢cient mechanisms yield conditional expected probability assignment
functions that satisfy conditions 4.3 and 4.4.
Note that an e¢cient SCR is piece-wise constant. Hence, for e¢cient mecha-

nisms we obtain that the associated functions fqi)gni=1 are everywhere continuously
di¤erentiable by recalling that the (convex) type spaces have a non-empty interior
and a piece-wise smooth boundary, and that for all i and all si 2 Si; fi(si) > 0:
We …rst focus on the simpler condition 4.4.

Theorem 4.1. Let (p; x) be an e¢cient DRM. Assume that the following are
satis…ed: 1) There exist i; j; k such that i 6= j; aiki 6= 0 and aikj 6= 0: 2) There
exist22 open neighborhoods £i 2 Si , £¡i1 ;£¡i2 2 S¡i such that pk(si; s¡i) = 1 for
all (si; s¡i) 2 £i £ £¡i1 and pk(s) = 0 for all (si; s¡i) 2 £i £ £¡i2 . Then (p; x)
cannot be incentive compatible.

22This requirement ensures that the alternative k is not always welfare dominated or welfare
dominant. Since an e¢cient SCR is uniquely de…ned almost everywhere, the choice of a speci…c
e¢cient SCR p is immaterial.
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Proof. Let fqlgNl=1 be the conditional expected probability assignments associated
with (p; x). Let si 2 £i. By e¢ciency, we obtain

qik(s
i) =

Z
¢k(si)

f¡i(s¡i)ds¡i (4.5)

where

¢k(s
i) = fs¡i j

NX
g=1

NX
l=1

alkgs
l
kg = max

k0

NX
g=1

NX
l=1

alk0gs
l
k0gg (4.6)

By de…nition and by condition 2 in the statement of the Theorem, we obtain
that ¢k(si) is a non-empty closed set, strictly included in S¡i: Because aikj 6= 0,
we obtain that the areay ¢k(s

i) changes when sikj varies: By de…nition, we obtain

that @q
i
k
(si)

@si
kj
6= 0 for all si 2 £i:

Suppose now that (p; x) is incentive compatible. Since the expected equilib-
rium utility Vi is twice di¤erentiable almost everywhere, there exists ti 2 £i where
Vi satis…es this requirement. Since aiki 6= 0, equation 4.4 yields @q

i
k(t

i)

@si
kj
= 0: This is

a contradiction.
So far we have assumed that sikj ; agent i

0 s signal a¤ecting the utility of agent
j in alternative k, is one-dimensional. We next look at an example where this
requirement is not satis…ed. An impossibility result in such situations has been
observed by Maskin (1992).

Example 4.2. There are two agents i = 1; 2 and two alternatives k = A;B:
Signals are two-dimensional, si = (si1; s

i
2); i = 1; 2: Valuations are given by

23:

V 1A(s
1; s2) = s11 + a(s

1
2 + s

2
2); V

1
B(s

1; s2) = 0

V 2B(s
1; s2) = s21 + a(s

1
2 + s

2
2); V

2
A(s

1; s2) = 0

Consider the change of variables:

ti = (ti1; t
i
2) = (s

i
1 + as

i
2; s

i
2)

In the ti type space we obtain:

V 1A(t
1; t2) = t11 + at

2
2; V

1
B(t

1; t2) = 0

V 2B(t
1; t2) = t21 + at

1
2; V

2
A(t

1; t2) = 0:

23Imagine an auction for an indivisible good where the components si1 , i = 1; 2; are the
private parts of the signals while the components si2 are common parts.
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Hence, agent 1 has a signal t12 which does not a¤ect her utility (in particular
it does not a¤ect her utility in alternative A), but a¤ects the utility of agent 2
in alternative B: In incentive compatible mechanisms we obtain by condition 4.4
that agent 1’s interim expected probability for alternative A cannot depend on
t12 , while t

1
2 is clearly matters for the determination of ex-post e¢ciency. Hence,

incentive-compatible, e¢cient mechanisms do not exist.
The example24 can be extended to the case where V 1A(s

1; s2) = s11 + as
1
2 + bs

2
2

and V 2B(s
1; s2) = s21+as

2
2+bs

1
2: Even when the dependence of an agent’s valuation

on the signal of another agent is very small (i.e., b is very close to zero), e¢ciency
cannot be attained.
In Theorem 4.1 and Example 4.2, the intuition behind the impossibility re-

sults is that a (one-dimensional) payment associated to each alternative is not
su¢cient to elicit multi-dimensional information whose various components are
all important for e¢ciency considerations.
The natural next step is to inquire the existence of e¢cient, incentive com-

patible mechanisms in a framework where, intuitively, K payments - one for each
possible alternative- should su¢ce to elicit the entire information: consider then
K¡dimensional type-spaces25, where sik is agent i’s one-dimensional piece of infor-
mation a¤ecting (possibly in di¤erent ways) the utility of all agents in alternative
k: In this setup, the remaining question is whether the conditional expected prob-
ability assignment functions generated by e¢cient mechanisms satisfy condition
4.326.
Recall that we have derived conditions 4.3 and 4.4 for signals of dimension

K£N: For eachK-dimensional signal eti; de…ne eVi(eti) ´ Vi(ti) and eqik(eti) ´ qik(ti),
where ti is theK£N¡dimensional signal such that tikj = etik for all k; j. Assuming
that Vi is di¤erentiable at ti; we obtain by conditions 4.3 and 4.4 that:

8k; @
eVi
@etik (eti) =

NX
j=1

@Vi
@tikj

(ti) = aikiq
i
k(t

i) = aikieqik(eti):
The equality of cross-derivatives implies that :

24Compte and Jehiel (1998) look at related examples in order to study the value of competition
in standard auctions.
25We assume below that the repective spaces fSjgNj=1 and densities ffjgNj=1 satisfy all condi-

tions imposed in Section 2 (relative to <K).
26An a¢rmative answer would imply an a¢rmative answer also for frameworks where 8i; j; i 6=

j; 8k; sikj is a linear function of the signals sik0i , k0 = 1; :::K; and where each sik0i is one-
dimensional. The situation treated in the text corresponds to the case where 8i; j; i 6= j; 8k; sikj =
siki:
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aiki
@ eqik(eti)
@eti
k
0
= ai

k
0
i

@eqi
k0 (
eti)

@etik (4.7)

In order to simplify notation, we drop from now on the ”tilde” and denote by
si = (si1; :::s

i
K) a K¡dimensional signal of agent i, yielding expected probability

assignments fqikgKk=1 , and equilibrium expected utility Vi:

Theorem 4.3. Assume that (p; x) is an e¢cient DRM ant that (p; x) is incentive
compatible for agent i: Let k; k0 be any pair of alternatives such that: 1) aik0i 6=
0 ; 2) There exists a type ti such that qik(s

i) 6= 0; qik0(s
i) 6= 0 for all si in a

neighborhood of ti 27. Then it must be the case that

aiki
ai
k0 i
=

PN
j=1 a

i
kjPN

j=1 a
i
k0 j

: (4.8)

Proof. See Appendix28.
Condition 4.8 is a congruence requirement between private and social rates of

information substitution (see the Examples below for more intuition about these
terms). The implied algebraic relations among parameters cannot be generically
satis…ed29. Note that condition 4.8 is trivially satis…ed in two interesting cases: the
private values case where 8i; j; i 6= j; 8k; aikj = 0; and the case where 8i; j; k; aikj =
aiki: In the next two Examples we provide the intuition for Theorem 4.3. The …rst
example (which was sketched in the Introduction) is very simple since only one
agent receives a private signal30.

Example 4.4. : There are two agents i = 1; 2 and three alternatives k = A;B;C:
Suppose that only agent 1 receives a signal, denoted by s = (sA; sB; sC)31:

A mechanism can be de…ned here by a triple of transfers to agent 1; x =
(xA; xB;xC) . Given x, agent 1 chooses an alternative k 2 argmaxk0(V 1k0(s) + xk0):
In contrast, an e¢cient rule chooses an alternative k 2 argmaxk0(V 1k0(s)+V 2k0(s)):
27Note that qik(t

i) 6= 0; qik0(ti) 6= 0 imply that
PN
j=1 a

i
k0j 6= 0 and that

PN
j=1 a

i
kj 6= 0.

28The Theorem has also converse: If condition 4.8 is satis…ed, and if an e¢cient SCR p yields,
for each agent i a monotone vector …eld Qi then there exist payment schedules x such that (p; x)
is incentive compatible.
29i.e., the set of parameters satisfying the condition is closed and has Lebesgue-measure zero.
30This implies that the conditional expected probability assignment function is deterministic

and coincides with the social choice rule.
31For ease of notation we omit here the superscript 1:
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Consider an incentive compatible, e¢cient mechanism32, i.e., a mechanism
where x is such that the two choice rules coincide. Keeping …xed the signal
a¤ecting payo¤s in alternative C; consider two types s¤ = (s¤A; s

¤
B; s

¤
C) and s

¤¤ =
(s¤¤A ; s

¤¤
B ; s

¤
C) such that:

2X
i=1

V iA(s
¤) =

2X
i=1

V iB(s
¤) >

2X
i=1

V iC(s
¤)

2X
i=1

V iA(s
¤¤) =

2X
i=1

V iB(s
¤¤) >

2X
i=1

V iC(s
¤¤) (4.9)

Together with the continuity of the valuation functions, e¢ciency and incentive
compatibility imply that33:

V 1A(s
¤) + xA = V 1B(s

¤) + xB
V 1A(s

¤¤) + xA = V 1B(s
¤¤) + xB (4.10)

The above equalities yield

V 1A(s
¤¤)¡ V 1B(s¤¤) = V 1A(s¤)¡ V 1B(s¤) (4.11)

Insert Figure 1 around here.

Equations 4.9 and 4.11 show that, as we move in the (sA; sB) sub-space from s¤

to s¤¤ along the curve de…ned by
P2
i=1 V

i
A(s) =

P2
i=1 V

i
B(s) we must also keep the

di¤erence V 1A(s)¡V 1B(s) constant (and equal to V 1A(s¤)¡V 1B(s¤)). But it is obvious
that the locus in the (sA; sB) sub-space where this di¤erence is constant need not
coincide with the locus de…ned by the society’s indi¤erence between alternatives
k and k0 (i.e., the curve from s¤ to s¤¤) In particular, for the two curves to coincide
around s¤ it is necessary that

@V 1A
@sA
(s¤)

@V 1
B

@sB
(s¤)

=
@
@sA
(
P2
i=1 V

i
A(s

¤))
@
@sB
(
P2
i=1 V

i
B(s

¤))
(4.12)

The next example shows how the above intuition generalizes to the more com-
plex case where several agents are privately informed.
32Note that setting xk0 = V 2k0(s) is not incentive compatible.
33To see this, consider types s0 = s¤ + "eA; and s00 = s¤ ¡ "eA where " > 0 is small and

where eA = (1; 0; 0): At s0 e¢ciency requires that alternative A is chosen, so that, by incentive
compatibility, V 1B(s

0) + xB · V 1A(s0) + xA: At s00 e¢ciency requires that alternative B is chosen
so that V 1A(s

0) + xA · V 1B(s
0) + xB: The assertion follows by letting " go to zero in the two

inequalities above. The argument for s¤¤ is analogous.
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Example 4.5. There are two agents i = 1; 2 and two alternatives k = A;B:
Signals are two dimensional, si = (siA; s

i
B); i = 1; 2: For i = 1; 2 let ¡i denote the

agent other than i: Valuations are given by:

V ik (s
i; s¡i) = aikis

i
k + a

¡i
ki s

¡i
k ; i = 1; 2; ; k = A;B

Assume that an e¢cient, incentive compatible DRM exists, and denote it by
(p; x): Let qik denote i

0s interim expected probability that the mechanism chooses
alternative k:
We will …rst show that, as a consequence of equation 4.7, incentive compat-

ible mechanisms must yield the same vector of conditional expected probability
assignments for types of agent i; i = 1; 2; lying on lines with slope aiAi

aiBi
: We next

show that e¢cient mechanism yield the same vector of conditional expected prob-

ability assignments for types lying on lines with slope
aiAi+a

i
A¡i

aiBi+a
i
B¡i
: Hence, incentive

compatibility can be consistent with e¢ciency only if these two slopes are equal.
We know that

8i;8si; qiA(si) + qiB(si) = 1: (4.13)

Consider agent 1: Equation 4.7 yields

a1A1
@q1A(s

1)

@s1B
= a1B1

@q1B(s
1)

@s1A
: (4.14)

By taking the derivative with respect to s1A in identity 4.13, we get

@q1B(s
1)

@s1A
= ¡@q

1
A(s

1)

@s1A

By equation 4.14, we get:

a1A1
@q1A(s

1)

@s1B
+ a1B1

@q1A(s
1)

@s1A
= 0: (4.15)

Fix now t1 = (t1A; t
1
B) such that the assumptions in the Theorem are satis…ed,

and consider a line in the type space of agent 1 having the form s1 = s1(r) =

(t1A + r; t
1
B +

a1A1
a1
B1
r). By equation 4.15 we have:

dq1A(t
1
A + r; t

1
B +

a1A1
a1
B1
r)

dr
=
@q1A(s

1)

@s1A
+
a1A1
a1B1

@q1A(s
1)

@s1B
= 0: (4.16)
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Hence, in incentive compatible mechanisms the function q1A is constant along
lines having the form (t1A + r; t

1
B +

a1A1
a1
B1
r) (by equation 4.13 the same is of course

true for q1B).
We now turn to the consequences of e¢ciency. Alternative A is chosen by an

e¢cient DRM at reports (s1; s2) i¤

2X
i=1

2X
j=1

ajAis
j
A ¸

2X
i=1

2X
j=1

ajBis
j
B

This is equivalent to:

(a1A1 + a
1
A2)s

1
A ¡ (a1B1 + a1B2)s1B ¸ (a2B1 + a2B2)s2B ¡ (a2A1 + a2A2)s2A (4.17)

E¢ciency implies that:

q1A(s
1) =

Z
¢(s1)

f2(s
2)ds2

where ¢(s1) = fs2 such that condition 4.17 is satis…edg:
Consider a line in agent 1’s type space having the form s1 = s1(r) = (t1A +

r; t1B +
a1A1+a

1
A2

a1
B1+a

1
B2
r): For any two signals µ1, ¿ 1; on this line, we have ¢(µ1) = ¢(¿ 1):

Therefore q1A(s
1(r)) does not depend on r: Taking the derivative with respect to

r; and multiplying by (a1B1 + a
1
B2) 6= 0; this yields :

(a1B1 + a
1
B2)
@q1A(s

1)

@s1A
+ (a1A1 + a

1
A2)
@q1A(s

1)

@s1B
= 0 (4.18)

Equations 4.16 and 4.18 yield together:

a1A1
a1B1

=
a1A1 + a

1
A2

a1B1 + a
1
B2

: (4.19)

The same logic yields an analogous condition for i = 2:

Several remarks regarding Theorem 4.3 follow.
Remark 1: The impossibility of incentive compatible, e¢cient mechanisms

is a general phenomenon, and it is not con…ned to our linear setting. Indeed,
recall that the only crucial property of valuation functions used in Example 4.4 is
continuity34. Linearity (which implies that marginal valuations are constant) was
used to get the simple global formula 4.8. Without linearity, one obtains congru-
ence conditions that locally equate average private and social rates of substitution

34Di¤erentiability was used there only to quantify the condition relating the two loci.
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(where the average is taken over the area in which two alternatives are equally
e¢cient).
Remark 2: Theorem 4.3 applies as stated to the case where the dimensionality

of signal spaces coincides with the number of alternatives K ¸ 2: But Example
4.4 makes it clear that the same type of result holds whenever, for at least one
agent, the dimension of the signal space is greater than one. In particular, we
obtain impossibility results for auctions of several heterogenous objects, where
the dimension of signal spaces is usually greater than 1; but smaller than the
number of alternatives (which equals the number of possible partitions of the set
of auctioned objects).
Remark 3: Dasgupta and Maskin (1999) suggest that the di¢culties appear-

ing in multi-dimensional models can be circumvented by performing a reduction to
a one-dimensional model for which e¢cient, incentive compatible mechanisms can
be constructed under less restrictive assumptions (see next Section). The e¢cient
mechanism for the reduced model is then constrained e¢cient (i.e., second-best)
for the original multi-dimensional model. Dimension reductions are indeed readily
available in two cases: 1) If a variable ŝikj, j 6= i; moves independently of (ŝik0i)k0 ;
condition 4.4 shows that incentive compatible mechanisms cannot condition on it.
Hence, such variables can be eliminated without a¤ecting the maximum e¢ciency
performance obtainable by incentive compatible mechanisms. 2) In Example 4.5
there were only two social alternatives A and B, and we have shown that in-
centive compatible mechanisms have the property that the conditional expected
probability assignment vector …eld qi is constant along lines in the type space Si

with the slope aiAi
ai
Bi
. A parameterization of this family of parallel lines yields a one-

dimensional type space35 for which an e¢cient, incentive compatible mechanism
can be constructed36. This mechanism is necessarily second-best for the original
model where …rst-best e¢ciency was impossible.
We wish to stress here that this insight does not hold anymore if at least one

agent perceives more than two payo¤ relevant alternatives37. Recall Example 4.4
where we had to keep one coordinate constant while operating on the other two.
For each pair of alternatives we obtain a one-dimensional family of lines as above,
but, since there are at least three di¤erent pairs, it is not a-priori clear how to

35Instead of reporting a type (siA; s
i
B); agent i reports, say, the intercept of a line with slope

aiAi
ai
Bi

:
36Similar reductions can be performed in models where there are possibly more than two

alternatives, but each agent perceives only two outcomes as payo¤ relevant. For example, in an
auction for one unit of an indivisible good without allocative externalities, an agent cares only
about ”winning” or ”losing”.
37This is the general case in auctions of several heterogenous objects or in auctions of one

object with allocative externalities.
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consistently combine the pair-wise information in order to reduce the dimension
of the signal spaces.

5. One-Dimensional Signals

We now assume that agents have one-dimensional signals. Agent i’s payo¤ in
alternative k is given by

V ik (s
i; s¡i) =

NX
j=1

ajkis
j

where sj 2 [sj ; sj ] denotes the one-dimensional signal of agent j. Signals need
not be independently distributed, and the result below does not depend on the
signals’ distribution functions.
In order to avoid a tedious case di¤erentiation, we assume that, for each agent

i; there are no alternatives k , k0, k0 6= k; such that aiki = aik0i. Our result will rely
on the following assumption:

8i;8k; k0; aiki > aik0i )
NX
j=1

aikj >
NX
j=1

aik0j (5.1)

Condition 5.1 (referred below as the weak congruence condition) requires that the
sequence of alternatives obtained by ordering (in terms of magnitude) the impacts
of i’s signal on i’s payo¤ is the same as the sequence obtained by ordering the
impacts of i0s signal on social welfare. By rewriting this condition as

8i;8k; k0; a
i
ki

aik0i
> 1)

PN
j=1 a

i
kjPN

j=1 a
i
k0j
> 1

we note a certain (formal) analogy with condition 4.8, but also the gained slack
in the one-dimensional framework. This slack (i.e., required inequalities instead
of equalities) allows the condition to be satis…ed for an open set of parameters’
values.

Theorem 5.1. Assume that the weak congruence condition 5.1 is satis…ed. Then
there exists an e¢cient, Bayesian incentive compatible mechanism. Moreover, the
associated transfers do not depend on the distribution of signals38.
38Technically, this result is not a special case of Dasgupta and Maskin (1999) because they

study multi-object auctions (without allocative externalities), while we study a general social
choice problem. Dasgupta and Maskin’s mechanism is more complex since it also elicits reports
about valuation functions, which, in their model, are not known to the designer. This allows
them to construct a mechanism whose rules do not depend on valuation functions. Building on
the insight in Dasgupta and Maskin (1997), the condition allowing implementation (condition
5.1) was …rst identi…ed in an earlier version of this paper.
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Proof. See Appendix.
We note here that the logic of the e¢cient revelation mechanism constructed in

the proof of the Theorem works in any quasi-linear framework under appropriate
conditions on marginal valuations (which, as shown by Dasgupta and Maskin
(1999), are generally more complex than condition 5.1)

6. Conclusions

We have shown that e¢cient, Bayesian incentive compatible mechanisms can exist
only if a congruence condition relating private and social rates of information
substitution is satis…ed. If signals are multi-dimensional, the congruence condition
is determined by an integrability constraint, and it can be satis…ed only in non-
generic cases. If signals are one-dimensional, the congruence condition reduces to
a monotonicity constraint and it can be generically satis…ed.
The impossibility results in the multi-dimensional case suggest a quest for

the second-best (or constrained e¢cient) mechanisms. It is straightforward to
construct second-best mechanisms if the ine¢ciency is purely due to the fact that
some informational variables must have a zero marginal e¤ect on the expected
probability assignment in incentive compatible mechanisms. It is then possible to
reduce the dimensionality of the model (without loss of e¢ciency) by eliminating
such variables. If, after performing these reductions, it is still the case that the
payo¤-relevant information depends in a non-trivial way on the chosen alternative
(as it is the case, say, in a general multi-object auction), we are left in a framework
covered by Theorem 4.3 and further dimension reductions become endogenous.
The construction of a second-best mechanism is then equivalent to the di¢cult
problem of …nding a monotone and conservative vector …eld that maximizes the
(expected) welfare functional39. This will be the subject of future work.
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Appendix
Proof of Theorem 3.1
a) Assume …rst that a DRM (p; x) satis…es the conditions in the Theorem.

Choose any agent i: We must show that 8si; ti; Ui(si; si) ¡ Ui(ti; si) ¸ 0: We
obtain the following chain of equalities:

Ui(s
i; si)¡ Ui(ti; si) = Vi(s

i)¡ Vi(ti)¡Qi(ti) ¢ (si ¡ ti)
=

Z si

ti
Qi(¿ i) ¢ d¿ i ¡Qi(ti) ¢ (si ¡ ti)

=
Z 1

0
[Qi((1¡ ®)ti + ®si))¡Qi(ti)] ¢ (si ¡ ti)d®

The …rst equality follows by equation 2.1 and by the de…nition of Vi: The
second equality follows by assumption. The last equality follows by choosing to
perform the integration on the straight line connecting ti and si:
The condition 8si; ti; Ui(si; si) ¡ Ui(ti; si) ¸ 0 is therefore equivalent to the

condition

8si; ti;
Z 1

0
[Qi((1¡ ®)ti + ®si))¡Qi(ti)] ¢ (si ¡ ti)d® ¸ 0:

It is enough to show that the integrand is non-negative for any ®, 0 · ® · 1:
For ® = 0; the claim is obvious. Assume that ® > 0: Noting that si ¡ ti =
1
®
((1¡ ®)ti + ®si ¡ ti); we obtain:

[Qi((1¡ ®)ti + ®si))¡Qi(ti)] ¢ (si ¡ ti) =
1

®
[Qi((1¡ ®)ti + ®si))¡Qi(ti)] ¢ ((1¡ ®)ti + ®si ¡ ti) ¸ 0

The last inequality follows from the monotonicity of Qi:
b) For the converse, assume that the DRM (p; x) is incentive compatible. This

implies that Vi(si) = Ui(si; si) = maxti Ui(ti; si): The function Vi is the supremum
of a collection of a¢ne functions and it must be convex. Convex functions are twice
di¤erentiable almost everywhere40. The convexity of Vi implies the monotonicity
of the sub-di¤erential map @Vi(si): At all points where Vi is di¤erentiable (i.e.,
a.e.) the sub-di¤erential @Vi consists of a unique point, the gradient rVi: Hence,
40This and all following properties of convex functions are listed in the classical text of Rock-

afellar, 1997.
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the function rVi is a.e. well-de…ned, monotone and di¤erentiable. Assuming that
Vi is di¤erentiable at si we obtain by expression 3.1 and by the Envelope Theorem
that:

8k; @Vi
@siki

(si) =
@Ui
@siki

(ti; si) jti=si= aikiqik(si) (7.1)

8k; 8j 6= i; @Vi
@sikj

(si) =
@Ui
@sikj

(ti; si) jti=si= 0 (7.2)

Hence, we obtain rVi(si) = Qi(si) whenever the gradient is well-de…ned (a.e.).
The integral representation is immediately obtained from the Fundamental The-
orem of Calculus if Vi is everywhere di¤erentiable. Otherwise, the result follows
by noting that a convex function is (up to a constant) uniquely determined by its
sub-di¤erential (see Rockafellar 1997, Theorem 24.9), and that it can be recovered
(up to a constant) by integrating any measurable selection from its sub-di¤erential
map (see Krishna and Maenner, 1999).

Proof of Theorem 4.3: Let (p; x) be an e¢cient, incentive compatible DRM,
and let (qik)

K
k=1 be the associated vector …eld of interim expected probabilities for

agent i: Consider a type ti and two alternatives k and k0 such that qik(s
i) 6= 0 and

qik0(s
i) 6= 0 for all si in a neighborhood of ti. We consider below signals si in that

neighborhood.
Since (p; x) is incentive compatible, the associated indirect utility function Vi

is twice-di¤erentiable a.e. Since (p; x) is e¢cient, the associated functions (qik)
K
k=1

are continuously di¤erentiable everywhere.
By equation 4.7 we obtain for almost all si:

8k; k0 ; aiki
@qik(s

i)

@si
k
0
= aik0 i

@qi
k0 (s

i)

@sik
(7.3)

Since p is e¢cient, we obtain:

qik(s
i) =

Z
¢k(si)

f¡i(s¡i)ds¡i (7.4)

where

¢k(s
i) = fs¡i j

NX
j=1

NX
g=1

ajkgs
j
k = max

k¤

NX
j=1

NX
g=1

ajk¤gs
j
k¤g (7.5)

An analogous expression holds for qi
k0 (s

i): For a …xed si de…ne now the locus
in S¡i where alternatives k and k0 achieve the same highest utility:

­k;k0 (s
i) = fs¡i j

NX
j=1

NX
g=1

ajkgs
j
k =

NX
j=1

NX
g=1

aj
k0gs

j

k0 = maxk¤

NX
j=1

NX
g=1

ajk¤gs
j
k¤g (7.6)
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We now want to calculate the derivative @qik(s
i)

@si
k
0
using expressions 7.4, 7.5 and

7.6: a marginal variation of sik0 a¤ects q
i
k(s

i) only by marginally shifting the

boundary ­k;k0(si) ½ ¢k(si) where k and k0 are equally e¢cient. Hence @qik(s
i)

@si
k0
is

equal to an integral over the boundary multiplied by the marginal shift, which is
proportional to (

PN
g=1 a

i
k0g); the constant coe¢cient of s

i
k0 in the equation de…ning

­k;k0(s
i)41.

To make this observation precise, de…ne:

z0 =
X
j 6=i

NX
g=1

ajkgs
j
k ¡

X
j 6=i

NX
g=1

aj
k0gs

j

k0

c = ¡(
NX
g=1

aikg)s
i
k + (

NX
g=1

aik0g)s
i
k0 (7.7)

Note that:

¢k(s
i) = fs¡i j z0 ¸ c ^

NX
j=1

NX
g=1

ajkgs
j
k ¸

NX
j=1

NX
g=1

aj
k00gs

j

k00 for k
00 6= k0g

­k;k0 (s
i) = ¢k(s

i) \ fs¡i j z0 = cg (7.8)

Consider an a¢ne, bijective change of variables in the space S¡i, where z0
is one of the new variables, and where z denotes the set of the remaining vari-
ables (with di¤erential element dz)42. Such a bijective change of variables exists
because z0 is not identically equal to zero (since qik(t

i) 6= 0 and qik0(t
i) 6= 0):

To …x ideas, suppose that the coe¢cients are such that for all alternatives k00

there exists an agent j(k00) 6= i, such that aj(k
00)

k00j(k00) 6= 0. Consider the map-

ping G : fsjk00gj 6=i;k00 ! fzjk00gj 6=i;k00 where: 1) For k00 6= k; j = j(k00); zj(k
00)

k00 =P
j 6=i

PN
g=1 a

j
kgs

j
k ¡

P
j 6=i

PN
g=1 a

j
k00gs

j

k00 (observe that z
j(k0)
k0 = z0); 2) For all (j; k00)

such that k00 = k or j 6= j(k00), zjk00 = sjk00 .
41This is the generalization to several dimensions of a standard one-dimensional result: de…ne

H(y) =
R c(y)
d(y) g(x)dx where g is continuous and where c; d are continuously di¤erentiable. By

the Fundamental Theorem of Calculus (FTC), H 0(y) = g(c(y))c0(y) ¡ g(d(y))d0(y). A general
proof of the multi-dimensional analog uses a multi-dimensional version of the FTC, called the
Divergence Theorem. (see Lang, 1973).
42If z = (z1; :::; zm), then dz = dz1dz2 ¢ ¢ ¢ dzm. The purpose of the change of variables is to

concentrate the entire dependence on sikand s
i
k0 in a single dimension, z0: This allows us to use

the one-dimensional argument of the previous footnote in the derivation of expression 7.9 below.
The choice of variables z is entirely arbitrary as long as they are well de…ned (we need to take
care about possible zero coe¢cients).
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Let G¡1 be the inverse of G; and let j ¢G¡1 j 6= 0 denote the absolute value of
the Jacobian determinant associated with G¡1: Note that j ¢G¡1 j is a constant
(i.e., it does not depend on (z0; z)) because G is a¢ne. We obtain now :

@qik(s
i)

@si
k0

=
@

@si
k0

ÃZ
¢k(si)

f¡i(s¡i)ds¡i
!

=
@

@si
k0

Ã
j ¢G¡1 j

Z
G(¢k(si))

f¡i(G¡1(z0;z))dzdz0

!

= ¡ @c

dsik0
j ¢G¡1 j

Z
G(­

k;k
0 (si))

f¡i(G¡1(c; z))dz

= ¡(
NX
g=1

aik0g) j ¢G¡1 j
Z
G(­

k;k
0 (si))

f¡i(G¡1(c; z))dz: (7.9)

The …rst equality in 7.9 follows by the de…nition of qik(s
i); the second equality

follows by the multi-dimensional change of variables formula (see Lang, 1973);
the third follows by expressions 7.8 and by the argument following expression 7.6;
the last equality follows by the de…nition of c in 7.7.

Using the same change of variables as above, the term
@qi
k
0 (si)

@si
k

is analogously

computed43:

@qi
k0 (s

i)

@sik
=

@c

dsik
j ¢G¡1 j

Z
G(­

k;k
0 (si))

f¡i(G¡1(c; z))dz

= ¡(
NX
g=1

aikg) j ¢G¡1 j
Z
G(­

k;k
0 (si))

f¡i(G¡1(c; z))dz: (7.10)

Combining equations 7.9 and 7.10 , we obtain that:

@qik(s
i)

@si
k0
(
NX
g=1

aikg) =
@qi

k0 (s
i)

@sik
(
NX
g=1

aik0g) (7.11)

Equations 7.3 and 7.11 yield together the wished result.

Proof of Theorem 5.1: Since all aiki are assumed to be di¤erent, we can
re-order the alternatives so that the sequence (aiki)k is strictly increasing, i.e.

43Note that the area in ¢k0 (s
i) where marginal variations of sik are relevant is also ­k;k0 (s

i):
The resulting expressions in 7.9 and 7.10 contain the same integrand over the same boundary,
but di¤er in terms of orientations (since the respective outward normal vectors have opposite
signs) and shifts (since the variables sik0 and s

i
k appear with di¤erent coe¢cients in the de…nition

of c).
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ai(k+1)i > aiki for k = 1; ::; K ¡ 1. Condition 5.1 implies then that the sequence
(
PN
j=1 a

i
kj)k is also strictly increasing.

We construct an e¢cient, incentive compatible, DRM. For any reported signals
the mechanism chooses an e¢cient alternative given those reports. To specify
transfers, we proceed as follows. For …xed reports s¡i and i’s report ti; denote by
k¤(ti) the e¢cient alternative chosen as a function of ti; i.e.

k¤(ti) 2argmax
k

NX
j=1

V jk (t
i; s¡i):

Because the sequence (
PN
j=1 a

i
kj)k is strictly increasing , we can de…ne for ev-

ery vector s¡i; a non-decreasing sequence of agent i’s signals (si;k(s¡i))k with
the property that, for any ti 2 (si;k(s¡i); si;k+1(s¡i)), the e¢cient alternative is
k¤(ti) = k.
For each vector s¡i we inductively de…ne a sequence of transfers, fxki (s¡i)gk ,

as follows: x1i (s
¡i) 2 < is an arbitrary constant, and for all k; 1 < k · K ¡ 1;

xk+1i (s¡i)¡ xki (s¡i) =
X
j;j 6=i

[V jk+1(s
i;k+1(s¡i); s¡i)¡ V jk (si;k+1(s¡i); s¡i)] (7.12)

If the vector of reports is (ti; s¡i), then i’s transfer is de…ned to be x¤i (t
i; s¡i) =

x
k¤(ti)
i (s¡i)44.
The logic underlying the speci…cation of the transfers is as follows. Fix

a vector of reports s¡i: Suppose that both intervals (si;k(s¡i); si;k+1(s¡i)) and
(si;k+1(s¡i); si;k+2(s¡i)) are non-empty. For si slightly above si;k+1(s¡i) the only
e¢cient alternative is k + 1. For si slightly below si;k+1(s¡i) the only e¢cient
alternative is k. At si = si;k+1(s¡i) both alternatives are e¢cient. The transfers
are adjusted so that, given s¡i; agent i with type si;k+1(s¡i) is made indi¤erent
between alternative k with transfer xki (s

¡i) and alternative k + 1 with transfer
xk+1i (s¡i):
We now show that it is optimal for agent i to report truthfully if all other

agents report truthfully. Fix s¡i the (truthfully) reported signal of all agents
other than i: In order to have a more transparent notation, we omit below the
dependence of si;k and xki on the …xed s

¡i.

44To avoid a cumbersome case di¤erentiation, we have assumed that, given s¡i; the set
fk¤(ti)gti2Si includes the entire set of alternatives. If this is not the case, then some of the
intervals (si;k(s¡i); si;k+1(s¡i)) may be empty. Transfers are then de…ned up to the arbitrary
value of the transfer in the …rst non-empty interval. Furthermore, if a signal si;k+1(s¡i) hits the
upper bound of agent i’s signal interval, then the transfer for all reports ti > si;k(s¡i) is set to
be equal to xki (s

¡i).
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Suppose without loss of generality that agent i’s true type si lies in
h
si;k; si;k+1

´
.

If agent i reports truthfully ti = si, his payo¤ is

Ui(s
i; s¡i) = V ik (s

i; s¡i) + xki :

For any report ti 2
h
si;k; si;k+1

´
, agent i gets the same payo¤. Suppose that agent

i makes a report ti 2
h
si;k+r; si;k+r+1

´
with r > 0. This non-truthful report yields

for agent i a payo¤ of

Ui(t
i; s¡i) = V ik+r(s

i; s¡i) + xk+ri :

Noting that xk+ri =
rP
l=1
(xk+li ¡ xk+l¡1i ) + xki and using expression 7.12, we obtain:

Ui(s
i; s¡i)¡ Ui(ti; s¡i) = V ik (s

i; s¡i)¡ V ik+r(si; s¡i)

¡
rX
l=1

0@X
j;j 6=i

[V jk+l(s
i;k+l; s¡i)¡ V jk+l¡1(si;k+l; s¡i)]

1A :
By the de…nition of si;k+l (at which both alternatives k + l ¡ 1 and k + l are
e¢cient), we obtain:X
j;j 6=i

[V jk+l(s
i;k+l; s¡i)¡ V jk+l¡1(si;k+l; s¡i)] = ¡[V ik+l(si;k+l; s¡i)¡ V ik+l¡1(si;k+l; s¡i)]

Finally, we obtain that:

Ui(s
i; s¡i)¡ Ui(ti; s¡i) = V ik (si; s¡i)¡ V ik (si;k+1; s¡i)

+
r¡1X
l=1

[V ik+l(s
i;k+l; s¡i)¡ V ik+l(si;k+l+1; s¡i)] + V ik+r(si;k+r; s¡i)¡ V ik+r(si; s¡i) =

aiki
³
si ¡ si;k+1

´
+
r¡1X
l=1

[ai(k+l)i
³
si;k+l ¡ si;k+l+1

´
] + ai(k+r)i

³
si;k+r ¡ si

´
=

rX
l=1

³
ai(k+l¡1)i ¡ ai(k+l)i

´ ³
si ¡ si;k+l

´
¸ 0

The last inequality follows because each of the terms in the sum is non-negative45

The proof for a report ti 2
h
si;k+r; si;k+r+1

´
with r < 0 is completely analogous.

Note that the transfers de…ned above do not depend on the distribution of
signals, and our mechanism implements the e¢cient social choice rule no matter
how the signals of the various agents are distributed46.
45By the assumption on the sequence (aiki)k; we have a

i
(k+l¡1)i ¡ ai(k+l)i < 0; because si lies

in
£
si;k; si;k+1

¢
; and because the sequence si;k is non-decreasing, we have si ¡ si;k+l · 0:

46In other words, truth-telling constitutes an ex-post equilibrium.
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